On the spectral behavior of the
Neumann Laplacian under mass
density perturbation

9th ISAAC Congress
Krakow, August 5 - 9, 2013

Luigi Provenzano,
Jjoint work with P. D. Lamberti

UNIVERSITA

DEGLI STUDI
Department of Mathematics. DI PP\D()VA

Doctoral School in Mathematical Sciences,
Mathematics Area



UNIVERSITA
P

Introduction

Let Q be a domain in RN of finite measure.

Let p € R :={f € L*°(Q) : essinfq f(x) > 0}




UNIVERSITA
S

Introduction

Let Q be a domain in RN of finite measure.
Let p € R :={f € L*°(Q) : essinfq f(x) > 0}
Consider

Lu= > (-1)"D*(AqsD"u)

0<|al|,|8|1<m

R sacan 2o



Introduction

Let Q be a domain in RN of finite measure.
Let p e R:={f € L>*(Q) : essinfq f(x) > 0}

Consider
Lu= > (-1)"D*(AqsD"u)

0<lal,|8]<m

and the eigenvalue problem
Lu= \pu

subject to homogeneous boundary conditions (Dirichlet, Neumann,
intermediate, etc.)
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Introduction

Qlu, ¢] := /Q Z Aach”uD‘egodx = )\/Q uppdx Yo € V(Q)

0<|e],|B|<m

m V(Q) C H™(Q) closed with V(Q) C L?(Q2) compact;
[ | Aaﬁ S LOC(Q) with Amfg = Aﬁa;
m there exist a, b, ¢ > 0 such that

al|ulZmiy < Qlu, u] + bllull22q).

Qlu, u] < cl|ul[fymqy;
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Poly-harmonic operators 1o

(—=A)"u = Apu

Let 0 < k < mand V(Q) = H™(Q) N HY(Q).

m k = m Dirichlet boundary conditions, V(Q) = HJ"(2)
(N=2, m=2 clamped plate);

m 0 < k < m Intermediate boundary conditions,
V(Q) = H™(Q) N HE(Q)
(N=2, m=2 hinged plate);

m k = 0 Neumann-type boundary conditions, V(Q2) = H™(Q)
(N=2, m=2 free vibrating plate).
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The eigenvalue problem

Our problem has a divergent sequence of eigenvalues

~b < Aifp] < Xofp] < -+ < Afp] < -




The eigenvalue problem

Our problem has a divergent sequence of eigenvalues

~b < Aifp] < Xofp] < -+ < Afp] < -

Our aim is to study the dependence

p = Ajlpl
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Analiticity of the eigenvalues ) oo

Theorem
Let F be a nonempty finite subset of N and let

RIF] :={p € R : Nlpl # Mlpl, ¥j € F, €N\ F},
O[F] = {p € R[F] : Nylp] = N2lp], Vir,j2 € F}.
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Analiticity of the eigenvalues g o

Theorem
Let F be a nonempty finite subset of N and let

RIF] :={p € R : Nlpl # Mlpl, ¥j € F, €N\ F},
O[F] = {p € R[F] : Nylp] = N2lp], Vir,j2 € F}.

Then R[F] is open in L>(K2) and the symmetric functions of the

eigenvalues
Neplel = D Nalel -+ Nilol, h=1,...|F|
j_1,...,jh€'F
<<Jn

are analytic in R[F].
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Derivatives of the eigenvalues ) oo

Theorem

Let F be a nonempty finite subset of N. If F = U]_, Fy and

p € N}_,O[F] is such that for each k =1, ..., n the eigenvalues
Ajlp] assume the common value \g, [p] for all j € Fy, then the
differential of Ar j, at p is given by the formula

dNEnlPllA] == Y /Q(U/)2P' dx ,

k=1 leFy

for all p € L>°(Q2), where for each k =1, ....n, {u;}icF, is an
orthonormal basis in Lf,(Q) of the eigenspace associated with
>\Fk [o]-
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Critical mass densities

We assume V(Q) C H}(Q)

Let M>0and Ly :={peR: [opdx =M}

Theorem

Let F be a nonempty finite subset of N. Then for all h=1, ..., |F|
the function which takes p € R[F] N Ly to Ap p[p] has no critical

mass densities fp such that \;[p] # 0 and have the same sign for all
JjEeF.
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Critical mass densities

We assume V(Q) C H}(Q)

Let M>0and Ly :={peR: [opdx =M}

Theorem

Let F be a nonempty finite subset of N. Then for all h=1, ..., |F|
the function which takes p € R[F] N Ly to Ap p[p] has no critical

mass densities fp such that \;[p] # 0 and have the same sign for all
JjEeF.

n
ch Z u,2 =const = uy = ... =ufr =0
k=1 1€F)
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Maximum principle

Theorem

Let C C L*(R2) be a bounded set. Then the functions from C to R
which take p € C to \j[p] are weakly* continuous for all j € N.
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Maximum principle

Theorem

Let C C L*(R2) be a bounded set. Then the functions from C to R
which take p € C to \j[p] are weakly* continuous for all j € N.

Theorem

Let C C R[F] be a weakly* compact subset of L>(S2). Let M > 0
such that C N Ly, is not empty. Assume that all the eigenvalues
Ajlp] have the same sign and do not vanish for all j € N, p € C.
Then for all h =1, ..., |F| the function which takes p € C N Ly to
NE hlp] has maxima and minima, and such points belong to

oC N L.
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Neumann boundary conditions

Let Q be a bounded domain in RN of class C!.

The eigenvalue problem for the Laplacian with Neumann boundary

conditions is
—Au = Apu, in Q, (1)
ou _ on 0f2.

v
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Neumann boundary conditions

Let Q be a bounded domain in RN of class C!.

The eigenvalue problem for the Laplacian with Neumann boundary
conditions is

—Au = Apu, in Q, (1)
% =0, on 0f2.

We have a sequence

0 <Aifp] < Xofp] <--- < Ajlp] < -
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Critical mass densities o

Theorem

Let Q be a bounded domain in RN of class C1, F = {m, n}, with
m,n € N, m # n. Let p € R[F] continuous, such that the solutions
of (1) be classic solutions and moreover their nodal domains are
stokians. Then for h = 1,2, j is not a critical mass density for the
function which takes p € R[F] N Ly to Ag p[p]. Moreover all
simple eigenvalues have no critical mass densities under the fixed
mass constraint.

E Ci u,-2 = const

icF
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Critical mass densities

Theorem

Let Q C RN and F be as in Theorem 6. Let C C R[F] be a
weakly* compact subset of L>°(Q2). Let M > 0 and

Ly ={p € L>®(Q): [op= M}. Then for h=1,2, the function
which takes p € C N Ly to Ar p[p] admits points of maximum and
minimum, and if for such points the solutions of problem (1) are
classic solution, they belong to OC N L.
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Steklov boundary conditions

Let Q be a bounded domain in RN of class C!.

The eigenvalue problem for the laplacian with Steklov boundary

condition is
Au=0, in 2,
{ Gu — \pu,  on 09. )

p€R ={f € L>®(09Q) : essinfyq f(x) > 0}.
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Steklov boundary conditions

Let Q be a bounded domain in RN of class C!.

The eigenvalue problem for the laplacian with Steklov boundary
condition is

Au=0, in 2,
{ Gu — \pu,  on 09. )
p€R ={f € L>®(09Q) : essinfyq f(x) > 0}.

We have a sequence

0<Aifp] S Xofp] < < Ajfp] < -
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Analyticity of eigenvalues and derivatives &0 & i

Theorem

Let Q be a bounded domain in RN of class C! and F a nonempty
finite subset of N. Then the symmetric functions of eigenvalues
AF p are analytic in R[F].

Moreover, if p € ©[F] and the eigenvalues \j[p] assume the
common value \g[p] for all j € F, then the differential of Ar  at p
is given by the formula

ane bl = - Ol (3 71) S [ oo
leF

for all p € L>°(0R), where {u;} is a hortonormal basis for Ag[p] in
H;’O(Q) = {ue H(Q): [,qupdo =0}.
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Critical mass densities

Proposition

Let B = BN(0,1) be the unit ball in RN, Sy the

(N — 1)-dimensional measure of 9B, F = {1,...,N}, M > 0. Then
the constant mass density py; = % is a critical mass density for
Ngp for h=1,..., N under the constraint fasz po = M.
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Critical mass densities

Theorem (C. Bandle 1968)

Let Q C R? be a simply-connected domain of symmetry order q
and suppose that the mass density p satisfies the symmetry

condition p(e%z) = p(z) on 9. Then

2 —1
Man-alpl daalpl < T 1< n< I, g odd,
2mn qg—2
n— ) n S VR 1 S S )
Aan-1[p], Aznlp] < =7 n<

Ag—1lp] < an] if g even

and the equality is attained at the circle with constant mass density.
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Critical mass densities

Remark
Let B = B(0,1) C R? and

“+o0

M F .
p(0) = 5 + JZ:; ajsin(j#) + b; cos(j6).

Then .
T
A1lp] < i

for all p € R’ with faB p = M such that by = b, = 0. The equality
is attained at the constant density.
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Neumann vs Steklov

Let B = B(0,1) be the unit ball in RN, M > 0, wy the volume of
B, Sy the (N — 1)-dimensional measure of 0B. Let B be the ball
B(0,1 —¢). Let p. € R be defined by

{ £, ierBg,

pe(X) =9 = _ M—cun@-o)¥ . (3)
Pe = (-9’ if x € B\ B,

I sancam w2
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Let B = B(0,1) be the unit ball in RN, M > 0, wy the volume of
B, Sy the (N — 1)-dimensional measure of 0B. Let B be the ball
B(0,1 —¢). Let p. € R be defined by

{ £, ierBg,

pe(X) =9 = _ M—cun@-o)¥ . (3)
Pe = (-9’ if x € B\ B,

> NON®
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Spectral convergence

[5 |V ul?dx . [5 |V ul?dx
Jg peu?dx %faB u?dx
We proved compact convergence of resolvent operators, which

implies norm convergence.

Theorem

Let B = B(0,1) be the unit ball in RN, M > 0, Sy the

(N — 1)-dimensional measure of OB and p. € R be defined as in
(22). Let Aj[p:| be the eigenvalues of problem (1) on B for all

j € N. Let \; be the eigenvalues of (2) on B corresponding to the
constant density % Then for all j € N we have lim._,g A\j[p:] = Xj.
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Spectral convergence

Theorem

Let Q be a bounded domain in RN of class C2, M > 0. We denote
by Q. the set {x € Q : dist(x,0Q) > c}. Let p. € R be defined by

) £, if x € Q,
X)i=4q M—eQ] -
fe \Q\ES‘YE\" if x € Q\ Q.,

Let Aj[p:] be the eigenvalues of problem (1) for all j € N. Let \; be
the eigenvalues of problem (2) corresponding to the constant mass
density IT%I' Then for all j € N we have lim._,o A\j[pc] = A;.
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Spectral convergence S i

Numerical experiments on B(0,1) in R? and M = 7. The first and
second eigenvalues for the Steklov problem with constant surface
density pr = % on OB are Ay = Ay = 2.

28 28
26 286
24 24
22 22
ZU D‘UE U‘1 UITE D‘Z D‘ZE U‘j U‘35 [I‘A U‘AE 05 ZU U‘UE D‘W U‘WS UIZ U‘ZE U‘ﬁ U‘ﬁﬁ U‘A D‘AE 05
(a) 11 (b) A2
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Derivatives at € = 0

Let B = B(0,1) C RN. Let u(r,0) = @i(r)¢;(#), where

rt=
i(r) = { i

Here v) = W for I € N, ¢/(0) = ¢4(01,...0n-1) is a solution
of

JV,(Jrsr), if r<1-—g,
(ady, (W Aper) + BY,, (M Aper)), ifl—e<r<1

Nz v[Z

—0¢;=1(I+ N —2)¢,

and —4 is the Laplace-Beltrami operator on SV—1.

R sancai-mor



UNIVERSITA

Derivatives at € = 0 (15 oo sroo
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Derivatives at € = 0

We impose continuity of &i(r) and &/(r) at r =1 — ¢ to get «, .
We impose Neumann boundary conditions &'(r),_, = 0 and we get
F(A\e)=0

Consider A[e] and \'[e]. We used Talylor expansions of F and
recursive formulas for the cross products of Bessel Functions and
their derivatives. Finally we let ¢ — 0

o = e (@
N[ = 2//\[0]+ 2)2[0] (5)

3 T N@I+NY

in particular N'[0] > 0 for all M >0, N > 2,/ € N.
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Final Remarks 1

In order to complete the picture:
m Non-existence of critical mass densities for the eigenvalues
with Neumann boundary conditions;

m What kind of critical point is the constant density for the
Steklov eigenvalues: in [1, Bandle] it is stated that it is indeed
a maximum if restricted to a subset of the densities we
considered;

m Extending the results of [1, Bandle] for N > 2.

m Formulas of derivatives at £ = 0 of the eigenvalues for more
general domains Q;

m Consider these problems for poly-harmonic operators ((—A)™
with Neumann and Steklov boundary conditions).
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Complements: Derivatives at € = 0

Set a = (1 —¢)Vel b= (1—¢)v/Ap-. We impose continuity of
u(r) and o'(r) at r =1 —¢ to get «, 3.

(b (2)Y7,(b) — aJ,(a) Yy, (b)),
(ad,(b) L, (a) — bJL, (b),(3)).

We impose Neumann boundary conditions &'(r),,_, = 0.
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F(\€)

+

+

(1- g) I (3) (Y7, (B) oy (1—2) = 4, () Yo (7))
a , b b

5 (@ (B) o (7=0) = Y (D))
(1b5){J (@) (Y5, (), (1 — ° )~ (b)Y, (1’38))
a b b

590 (4 (B)Y), (7—2) = Yu(b), (7—

— ))}:0.

The hypothesis of Implicit Function Theorem are fulfilled and we
have implicitly the eigenvalues as functions of «.
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Complements: Derivatives at € = 0

Consider A[e] and X'[¢]. We used Talylor expansions of F and
recursive formulas for the cross products of Bessel Functions and
their derivatives. Finally we let ¢ — 0

INwp

A = = (6)
, 2/\[0] 2)2[0]
rol 3 T N@I+ N ")

in particular N'[0] > 0 for all M >0, N > 2,/ € N.
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Definition

Let H be a real Hilbert space, K(H, H) the Banach subspace of L(H, H)
of those T € L(H, H) which are compact. A set K C K(H, H) is said to
be collectively compact if and only if the set {K[x]: K € K, x € B},
where B is the unit ball in H, has compact closure. We say that a
sequence of compact operators {K,,}neN compactly converges to the
compact operator K if {K,},  is collectively compact and

Kn[xa] = K[x] whenever x, — x in H.

Theorem

Let H be a real Hilbert space, {Kn},cny C K(H, H) compactly convergent
to K € K(H, H), and K, and K are self-adjoint for all n € N. Then

nﬂToo 1Kn — KHL(H,H) =0.
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Complements 5w

Definition

A domain Q C R? is said to be of symmetry order q if there exists
a symmetry center O such that Q is invariant with respect to a
rotation of an angle 27“ around O.
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Complements

Bilaplacian with Neumann conditions

n=2, N=2

(=8)%u = Apu, in Q,

ai =0, on 09,

d oDu _ .

dS dlldt + dz/u - 07 on OQ,
n=2, N>2

(—A 2y = Apu, in Q,

58 =0 on 012,

o2

divag (Paq [(D?u). }Ha{ﬁuza on 99
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Complements

A bounded open set Q in RV is called stokian if its regular
boundary 0resQ has finite (N — 1) dimensional measure and
0\ Oreg2 has zero (N — 1) dimensional measure.
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